ANOMERIC CONFIGURATION IN CARBOHYDRATES

H. B. Sinclair and Ronald T. Sleeter

Northern Regional Research Laboratory,** Peoria, Illinois 61604

(Received in USA 24 October 1969; received in UK for publication 2 February 1970)

In carbohydrate chemistry, nmr spectroscopy is well established (1) as a powerful tool for clucidating conformational and configurational structures. But one problem has persisted. Since interacting protons are located in similar electron-density environments, carbohydrates and derivatives show complex low-field spectra. One method of improving the low field resolution is to operate the spectrometer at higher magnetic field (2); another method is to convert the carbohydrate to a derivative (3) that shifts the desired resonance peak away from the low field region. We report here a procedure for determining the anomeric configuration in carbohydrates. This procedure depends upon sufficient carbohydrate being available for conversion to a 6-deoxyhexose and also both anomers being available.

The preferred formation of the α -anomer of 1-substituted-D-glucopyranosides (and several other carbohydrates) is well known (4) and has been called the anomeric effect (4,5). This effect was explained by Edwards (6) in terms of a dipole interaction between the C-O bond in the ring and the anomeric substituent. On examination of models we were persuaded that this "anomeric effect" or dipole interaction would influence in a regular manner the electron-density environment around the C_6 position in glycopyranosides. When a C_5 -hydroxylmethyl is converted to a C_5 -CH₃, a 6-deoxyhexose, a three proton doublet appears upfield and widely separated from other resonance peaks. When a series of 6-deoxypyranoside anomers were compared, the C_5 -CH₃ peak for the α -anomer was located always at a higher field than the β -anomer (Table I). With a pure monosaccharide anomer the appearance on anomerization of another doublet, usually observed as a three-line pattern (two overlapping doublets), was sufficient to establish the anomeric configuration of the starting monosaccharide.

The utility of this observation was demonstrated when, in a study of the reaction of ptoluenesulfonyl (tosyl) chloride and methyl β -maltoside, we isolated and purified a di-q-tosyl

^{*} This is a laboratory of the Northern Utilization Research and Development Division, Agricultural Research Service, U.S. Department of Agriculture.

 $\begin{tabular}{ll} $TABLE I. \\ C_5-CH_3 resonance peak in anomeric 6-deoxypyranosides \\ \end{tabular}$

	α			β		
Compound	8	<u>J</u> , H2	8	J, Hz	Sol- ven t a	Ref
6-Deoxy-L-mannose	1.60	6	1.65	6	P	<u>b</u>
Methyl 6-deoxy-L-mannoside	1.26	б	1.28	6	D	<u>b</u>
Methyl 2,3,4-tri-Q-acetyl-6-deoxy- L-mannoside	1.20 1.17	6 6	1.28 1.24	6 6	C T	<u>b</u>
6-Deoxy- <u>D</u> -galactose	1.19	7	1.22	7	D	<u>b</u>
Methyl 2,3,4-tri-Q-acetyl-6-deoxy- D-galactoside	1.13 1.11	6 8	1.21 1.18	6 6	C T	<u>b</u>
Methyl 6-deoxy-2,4-di-Q-methyl-D-galactoside	1.29	6.1	1.36	6	С	<u>c</u>
Methyl 3-acetamido-2,3,6-trideoxy- <u>D-arabino</u> -hexopyranoside	1.28	6	1.34	6	С	<u>d</u>
4-Q-acetyl of above compound	1.20	6	1.25	6	С	<u>d</u>
6-Deoxy- <u>P</u> -glucose	1.21	6.5	1.26	6	D	<u>b</u>
Methyl 6-deoxy-D-glucoside	1.24	6	1.26	6	D	<u>b</u>
Methyl 2,3,4-tri-Q-acetyl-6-deoxy- D-glucoside	1.18 1.15	6 6	1.22 1.21	6 6	C T	<u>b</u> <u>b</u>
2-Methoxy- <u>trans</u> -5,6- dimethyltetrahydropyran	1.08	6.2	1.17	6.3	С	<u>e</u>
2-Methoxy- <u>cis</u> -5,6- dimethyltetrahydropyran	1.01	6.6	1.10	6.3	С	<u>e</u>
Methyl L-oleandroside	1.30	6	1.35	5•5	C	£
Di-Q-acetyl- <u>L</u> -oleandroside	1.14	6	1.19	6	C	£
<u>n</u> -Butyl <u>p</u> -desoaminide	1.18	6.2	1.28	6.2	С	£
Chalcose	1.53	6	1.60	6	D	g
Desoamine	1.62	6.5	1.67	6.6	D	<u>h</u>
Ossamine hydrochloride	1.1		1.2		D	<u>i</u>
Viosamine hydrochloride	1.85	6.5	1.90	6.5	D	<u>j</u>

 $[\]underline{\underline{a}}$ P = pyridine, D = D₂0, C = CDCl₃, T = CCl₄.

Footnotes continued--

TABLE I. Footnotes continued ---

b This study.

E. Akita, K. Maeda, and H. Umezawa, J. Antibiot. (Tokyo) Ser. A. 17, 200 (1964).

d H. H. Baer, K. Capek, and M. C. Cook, Can. J. Chem. 47, 89 (1969).

© D. T. Sepp and C. B. Anderson, <u>Tetrahedron 24</u>, 6873 (1968). Anomeric designation in carbohydrate nomenclature. These authors did not differentiate the methyl resonance peaks; the assignment is ours.

f W. D. Celmer and D. C. Hobbs, Carbohyd. Res. 1, 137 (1965).

E. P. W. K. Woo, H. W. Dion, and L. F. Johnson, J. Amer. Chem. Soc. 84, 1066 (1962). 6-values estimated from figure.

 $\frac{h}{s}$ P. W. K. Woo, H. W. Dion, L. Durham, and H. S. Mosher, <u>Tetrahedron Lett</u>. 735 (1962). $\frac{h}{s}$ -Values estimated from figure.

½ C. L. Stevens, G. E. Gutowski, C. P. Bryant, R. P. Glinski, O. E. Edwards, and G. M. Sharma, <u>Tetrahedron</u> <u>Lett.</u> 1181 (1969). These authors did not assign any anomeric configuration to the methyl doublets; the assignment is ours.

i C. L. Stevens, P. Blumbergs, F. A. Daniker, D. H. Otterbach, and K. G. Taylor, <u>J. Org. Chem.</u> 31, 2822 (1966). Reference was external TMS.

derivative and two mono-Q-tosyl derivatives. Displacement of the tosyl group with iodide ion produced the corresponding methyl deoxyiodo- β -maltosides, which on catalytic hydrogenolysis were converted to the methyl deoxy- β -maltosides. Proton spectra of these deoxymaltosides permitted the assignment of each methyl doublet to a specific position (Table II). Proof of structural assignments (and thus methyl assignments) was obtained chemically when crystalline II (R = Ac, X = OTs, Y = H) on treatment with aqueous sodium hydroxide gave methyl 3^{1} , 6^{1} -anhydro- β -maltoside as a chromatographically homogenous sirup. Quantitative periodate oxidation of this sirup found one α -glycol group.

Since methods (7) are established for transforming a primary hydroxyl to a 6-deoxylodoand 6-deoxyhexose, this new procedure for determining anomeric configuration is practical.

TABLE II.							
Methyl	resonance	peaks	of	maltosides			

	6	6 6'			
Compound a	J	J, Hz	δ	<u>J</u> , Hz	mp, °C
I	1.16	6.2	1.39	6.0	186-187
II			1.39	6.0	120-121
III	1.15	6.0			176-177

a Satisfactory analyses were obtained for crystalline compounds.

REFERENCES

- L. D. Hall, <u>Advan. Carbohyd. Chem.</u> <u>19</u>, 51 (1964); G. E. McCasland, <u>Advan. Carbohyd. Chem.</u> <u>20</u>, 11 (1965).
- N. S. Bhacca and D. Horton, <u>J. Amer. Chem. Soc.</u> <u>89</u>, 5993 (1967); <u>Chem. Commun.</u>, 867 (1967);
 N. S. Bhacca, D. Horton, and H. Paulsen, <u>J. Org. Chem.</u> <u>52</u>, 2484 (1968).
- 3. R. H. Bell, D. Horton, and D. W. Williams, Abstr. Pap., Amer. Chem. Soc. 155, 4c (1968).
- 4. R. U. Lemieux, Molecular Rearrangements, P. DeMayo, ed., Interscience Publishers, New York, 1964, pp. 733-743.
- 5. Recently the disfavoring of conformations with parallel unshared electron pairs on non-adjacent atoms has been called "rabbit ear effect" by R. D. Hutchins, L. D. Kopp, and E. L. Eliel, J. Amer. Chem. Soc. 90, 7174 (1968).
- 6. J. T. Edwards, Chem. Ind. (London), 1102 (1955); E. L. Eliel and C. A. Giza, J. Org. Chem. 33, 3754 (1968).
- 7. S. Hanessian, Advan. Carbohyd. Chem. 21, 149 (1966).

 $[\]underline{\mathbf{b}}$ CDCl3 with TMS internal reference, 100 MHz.